It is difficult to obtain explicit expressions of Green’s function for elastic medium with general anisotropy. The difficulty is associated with an integration of functions with high degrees of singularity. In this paper, we propose a method employing extend functions. This method avoids the difficulty of singularities and renders an explicit series expression of Green’s function for general anisotropic conditions. Analytical expression of the coefficients in the series are provided. Numerical examples are given to evaluate the applicability of this method.

1.
Brebbia, C. A., Telles, J. C. F., and Wrobel, L C., 1984, Boundary Element Techniques, Springer-Verlag, Berlin.
2.
Elliott
H. A.
,
1948
, “
Three-dimensional stress distribution in hexagonal aeolo-tropic crystals
,”
Proceedings, Cambridge Philosophical Society
, Vol.
44
, pp.
522
533
.
3.
Eshelby
J. D.
,
1959
, “
The elastic field outside an ellipsoidal inclusion
,”
Proceedings of Royal Society, London
, Vol.
A252
,
561
569
.
4.
Friedman, B., 1956, Principles and Techniques of Applied Mathematics, John Wiley and Sons, New York.
5.
Hill
R.
,
1962
, “
Acceleration waves in Solids
,”
Journal of Mechanics and Physics of Solids
, Vol.
10
, pp.
1
16
.
6.
Hill
R.
, and
Hutchinson
J. W.
,
1975
, “
Bifurcation phenomena in the plane tension test
,”
Journal of Mechanics and Physics of Solids
, Vol.
23
, pp.
239
264
.
7.
Kinoshita
N.
, and
Mura
T.
,
1971
, “
Elastic Fields of inclusions in anisotropic media
,”
Physica Status Solidi (a)
, Vol.
5
, pp.
759
768
.
8.
Kroner
E.
,
1953
, “
Das fundamentalintegral der anisotropen elastischen differentialgleichungene
,”
Zeitschrift fur Physik
, Vol.
136
, pp.
402
410
.
9.
Lejcek
L.
,
1969
, “
The Green function of the theory of elasticity in an anisotropic hexagonal medium
,”
Czech. Journal of Physics, Series B
, Vol.
19
, pp.
799
803
.
10.
Mura
T.
,
1971
, “
Displacement and Plastic Distortion Fields Produced by Dislocations in Anisotropic Media
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
38
, pp.
865
868
.
11.
Mura
T.
, and
Kinoshita
N.
,
1971
, “
Green’s functions for anisotropic elasticity
,”
Physica status solidi (b)
, Vol.
47
, pp.
607
618
.
12.
Mura, T., 1987, Micromechanics of Defects in solids, Martinus Nijhoff Publishers, Dordrecht, The Netherlands.
13.
Pan
Y. C.
, and
Chou
T. W.
,
1976
, “
Point Force Solution for an Infinite Transversely Isotropic Solid
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
43
, pp.
608
612
.
14.
Sveklo
V. A.
,
1969
, “
Concentrated force in a transversely isotropic half-space and in a composite space
,”
Journal of Applied Mathematics and Mechanics
, Vol.
33
, pp.
517
523
.
15.
Thompson, Sir W. (Lord Kelvin), 1848, “Note on the integration of the equation of equilibrium of an elastic solid,” Cambridge and Dublin Mathematical Journal, pp. 76–99.
16.
Vogel, S. M., and Rizzo, F. J., 1973, “An integral equation formulation of three dimensional anisotropic elastostatic boundary value problems,” Journal of Elasticity, Vol. 3, Sept.
17.
Walpole
L. J.
,
1967
, “
The elastic field of an inclusion in an anisotropic medium
,”
Proceedings of Royal Society, London
, Vol.
A300
, pp.
270
289
.
18.
Woo
T. C.
, and
Shield
R. T.
,
1962
, “
Fundamental solutions for small deformations superposed on finite biaxial extension of an elastic body
,”
Archive for Rational Mechanics and Analysis
, Vol.
9
, pp.
196
224
.
19.
Willis
J. R.
,
1965
, “
The elastic interaction energy of dislocation loops in anisotropic media
,”
Quarterly Journal of Mechanics and Applied Mathematics
, Vol.
18
, pp.
419
433
.
This content is only available via PDF.
You do not currently have access to this content.