In this paper we present a method for obtaining first-order decoupled equations of motion for multirigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or holonomic systems with unreduced configuration coordinates, we incorporate an orthogonal complement in conjunction with the congruency transformation. A pair of examples illustrate the results. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.

1.
Ben-Israel, A., and Greville, T. N. E., 1974, Generalized Inverses: Theory and Applications, John Wiley and Sons, New York.
2.
Crandall, S. H., Karnopp, D. C., Kurtz, E. F., Jr., and Pridmore-Brown, D. C., 1968, Dynamics of Mechanical and Electromechanical Systems, Robert E. Krieger, Malabar, FL.
3.
Desloge
E. A.
,
1987
, “
Relationship Between Kane’s Equations and the Gibbs-Appell Equations
,” Engineering Notes,
Journal of Guidance, Control and Dynamics
, Vol.
10
,
Jan.-Feb
., pp.
120
122
.
4.
Gibbs
J. W.
,
1879
, “
On the Fundamental Formulae of Dynamics
,”
American Journal of Mathematics
, Vol.
II
, pp.
49
64
.
5.
Gibbs, J. W., 1961, The Scientific Papers of J. Willard Gibbs, Vol. II, Dover, New York.
6.
Hartog, J. P. D., 1948, Mechanics, Dover Publications, New York.
7.
Hemami
H.
, and
Weimer
F. C.
,
1981
, “
Modeling of Nonholonomic Dynamic Systems With Applications
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
48
, pp.
177
182
.
8.
Huston, R. L., 1990, Multibody Dynamics, Butterworth-Heinemann, Boston.
9.
Huston
R. L.
,
1987
, “
On the Equivalence of Kane’s Equations and Gibbs’ Equations for Multibody Dynamics Formulations
,”
Mechanics Research Communications
, Vol.
14
, No.
2
, pp.
123
131
.
10.
Kamman
J. W.
, and
Huston
R. L.
,
1984
, “
Dynamics of Constrained Multibody Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
51
, pp.
899
903
.
11.
Kane, T. R., 1972, Dynamics, Stanford, CA.
12.
Kane, T. R., and Levinson, D. A., 1985, Dynamics: Theory and Applications, McGraw-Hill, New York.
13.
Lawson, C. L., and Hanson, R. J., 1974, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, N.J.
14.
Nikravesh
P. E.
, and
Haug
E. J.
,
1983
, “
Generalized Coordinate Partitioning for Analysis of Mechanical Systems with Nonholonomic Constraints
,”
ASME Journal of Mechanisms, Transmissions, and Automation in Design
, Vol.
105
, pp.
379
384
.
15.
Papastavridis
J. G.
,
1992
, “
Discussion on the Paper Entitled: Dynamics of Nonholonomic Mechanical Systems Using a Natural Orthogonal Complement
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
59
, pp.
242
244
.
16.
Papastavridis
J. G.
,
1988
, “
On the Nonlinear Appell’s Equations and the Determination of Generalized Reaction Forces
,”
Int. J. Engng. Sci.
, Vol.
26
, No.
6
, pp.
609
625
.
17.
Roberson, R. E., and Schwertassek, R., 1988, Dynamics of Multibody Systems, Springer-Verlag, Berlin.
18.
Scott
D.
,
1988
, “
Can a Projection Method of Obtaining Equations of Motion Compete with Lagrange’s Equations
,”
American Journal of Physics
, Vol.
56
,
May
, pp.
451
456
.
19.
Singh
R. P.
, and
Likins
P. W.
,
1985
, “
Generalized Coordinate Partitioning for Constrained Dynamical Systems
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
52
, pp.
943
948
.
20.
Storch
J.
, and
Gates
S.
,
1989
, “
Motivating Kane’s Method for Obtaining Equations of Motion for Dynamic Systems
,” Engineering Notes,
Journal of Guidance, Control and Dynamics
, Vol.
12
,
July–Aug
., pp.
593
595
.
21.
Wade, T. L., 1951, The Algebra of Vectors and Matrices, Addison-Wesley, Cambridge, MA.
22.
Wang
J. T.
, and
Huston
R. L.
,
1988
, “
Computational Methods in Constrained Multibody Dynamics: Matrix Formalisms
,”
Computers and Structures
, Vol.
29
, No.
2
, pp.
331
338
.
23.
Wehage
R. A.
, and
Haug
E. J.
,
1982
, “
Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems
,”
ASME Journal of Mechanical Design
, Vol.
104
, pp.
247
255
.
24.
Wampler
C.
,
Buffinton
K.
, and
Shu-hui
J.
,
1985
, “
Formulation of Equations of Motion for Systems Subject to Constraints
,”
ASME JOURNAL OF APPLIED MECHANICS
, Vol.
52
, pp.
465
470
.
25.
Xu
M.
,
Liu
C.
, and
Huston
R. L.
,
1990
, “
Analysis of Nonlinearly Constrained Non-Holonomic Multibody Systems
,”
International Journal of Non-Linear Mechanics
, Vol.
25
, No.
5
, pp.
511
519
.
This content is only available via PDF.
You do not currently have access to this content.