A formulation of a fully three-dimensional unit cell model is presented for uniform general deformation at a point in a composite material. The unit cell model is constructed as a finite element discretization of the unit cube. General displacement periodicity boundary conditions are prescribed such that the cell may be considered as a representative volume element of material. As a particular application of the model, the problem of determining the least anisotropic periodic model of a particulate composite is considered, and comparisons are made with bounds for elastic two-phase composites possessing cubic symmetry.

1.
ABAQUS, 1991, 4.9 User’s Manual, Hibbitt, Karlsson and Sorensen, Providence, RI.
2.
Avellaneda
 
M.
,
1987
, “
Optimal Bounds and Microgeometries for Elastic Two-Phase Composites
,”
SIAM Journal of Applied Mathematics
, Vol.
47
, pp.
1216
1228
.
3.
Brockenbrough
 
J. R.
,
Suresh
 
S.
, and
Wienecke
 
H. A.
,
1991
, “
Deformation of Metal-Matrix Composites with Continuous Fibers: Geometrical Effects of Fiber Distribution and Shape
,”
Shape Metallurgica Materialia
, Vol.
39
, No.
5
, pp.
735
752
.
4.
Brockenbrough
 
J. R.
,
Hunt
 
W. H.
, and
Richmond
 
O.
,
1992
, “
A Reinforced Material Model Using Actual Microstructural Geometry
,”
Scripta Metallurgica Et Materialia
, Vol.
27
, No.
4
, pp.
385
390
.
5.
Dib
 
M. W.
, and
Rodin
 
G. J.
,
1993
, “
Three Dimensional Analysis of Creeping Polycrystals Using Periodic Arrays of Truncated Octahedron
,”
J. Mech. Phys. Solids
, Vol.
41
, No.
4
, pp.
725
748
.
6.
Hom
 
C. L.
, and
McMeeking
 
R. M.
,
1991
, “
Plastic Flow in Ductile Materials Containing a Cubic Array of Rigid Spheres
,”
International Journal of Plasticity
, Vol.
8
, pp.
239
267
.
7.
Nagpal, V., McClintock, F. A., Berg, C. A., and Subudhi, M., 1972, Foundations of Plasticity, A. Sawczuk, ed., Noordhoff, pp. 365–387.
8.
Nemat-Nasser
 
S.
,
Iwakuma
 
T.
, and
Hejazi
 
M.
,
1982
, “
On Composites with Periodic Structure
,”
Mechanics of Materials
, Vol.
1
, pp.
239
267
.
9.
PATRAN, 1990, 2.4 Users Manual, PDA Engineering, Costa Mesa, CA.
10.
Rodin
 
G. J.
,
1993
, “
The Overall Elastic Response of Materials Containing Spherical Inhomogeneities
,”
International Journal of Solids and Structures
, Vol.
8
, No.
14
, pp.
1849
1863
.
11.
Sautter
 
M.
,
Dietrich
 
Ch.
,
Poech
 
M. H.
,
Schmauder
 
S.
, and
Fischmeister
 
H. F.
,
1992
, “
Finite Element Modeling of a Transverse-Loaded Fibre Composite
,”
Computational Material Science
, Vol.
26
, pp.
12
22
.
12.
Teply
 
J. L.
, and
Dvorak
 
G. J.
,
1988
, “
Bounds on Overall Instantaneous Properties of Elastic-Plastic Composites
,”
J. Mech. Phys. Solids
, Vol.
36
, pp.
29
58
.
This content is only available via PDF.
You do not currently have access to this content.