The weakly nonlinear instability of a viscous liquid jet emanated into a viscous gas contained in a coaxial vertical circular pipe is investigated as an initial-value problem. The linear stability theory predicted that the jet may become unstable either due to capillary pinching or due to interfacial stress fluctuation. The results of nonlinear stability analysis shows no tendency of supercritical stability for both of the linearly unstable modes. In fact, the nonlinear growth rate of the disturbance is faster than the exponential growth rate of the linear normal mode disturbance for the same flow parameters. Moreover, the most amplified linear normal mode disturbance evolves nonlinearly into a nonsinusoidal wave of shorter wavelength. No nonlinear instability is found for the linearly stable disturbances. Thus, while the linear theory is adequate for the prediction of the onset of jet breakup, nonlinear theory is required to describe the outcome of the jet breakup.

This content is only available via PDF.
You do not currently have access to this content.