A Boundary Element Method (BEM) formulation for the determination of design sensitivities of temperature distributions to various shape and process parameters in steady-state convection-diffusion problems is presented in this paper. The present formulation is valid for constant or piecewise-constant convective velocities. This approach is based on direct differentiation (DDA) of the relevant BEM formulation of the problem. It retains the advantages of the BEM regarding accuracy and efficiency while avoiding strongly singular kernels. The BEM formulation is also observed to avoid any false diffusion. This approach provides a new avenue toward efficient optimization of steady-state convection-diffusion problems and may be easily adapted to investigate the thermal aspects of various machining processes.

This content is only available via PDF.
You do not currently have access to this content.