A straight beam with fixed ends, forced with two frequencies is considered. By using Galerkin’s method, the equation of motion of the beam is reduced to a finite degree-of-freedom system. The resulting equation is transformed into a multi-frequency system and the averaging method is applied. It is shown, by using Melnikov’s method, that there exist transverse homoclinic orbits in the averaged system associated with the first-mode equation. This implies that chaotic motions may occur in the single-mode equation. Furthermore, the effect of higher modes and the implications of this result for the full beam motions are described.

This content is only available via PDF.
You do not currently have access to this content.