Scattering of elastic waves by a subsurface crack in an orthotropic half-space subjected to a surface line load of arbitrary angle of inclination is studied. Green’s functions are developed and used along with the representation theorem to reduce the problem to a set of simultaneous singular integral equations in the Fourier transformed domain. Solution to these equations is then obtained by expanding the unknown crack opening displacement (COD) in terms of Chebyshev polynomials. Numerical results are given for specific examples involving orthotropic materials.

This content is only available via PDF.
You do not currently have access to this content.