A mode synthesis approach is presented to calculate the eigenproperties of a structure from the eigenproperties of its substructures. The approach consists of synthesizing the substructures sequentially, one degree-of-freedom at a time. At each coupling stage, the eigenvalue is obtained as the solution of a characteristic equation, defined in closed form in terms of the eigenproperties obtained in the preceding coupling stage. The roots of the characteristic equation can be obtained by a simple Newton-Raphson root finding scheme. For each calculated eigenvalue, the eigenvector is defined by a simple closed-form expression. The eigenproperties obtained in the final coupling stage provide the desired eigenproperties of the coupled system. Thus, the approach avoids a conventional solution of the second eigenvalue problem. The approach can be implemented with the complete set or a truncated number of substructure modes; if the complete set of modes is used, the calculated eigenproperties would be exact. The approach can be used with any finite element discretization of structures. It requires only the free interface eigenproperties of the substructures. Successful application of the approach to a moderate size problem (255 degrees-of-freedom) on a microcomputer is also demonstrated.

This content is only available via PDF.
You do not currently have access to this content.