An anisotropic constitutive model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the existence of back stress in single crystals. The results showed that the back stress effect of reverse inelastic flow on the unloading stress is orientation dependent, and a back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior. Model correlations and predictions of experimental data are presented for the single crystal supperalloy Rene´ N4 at 982°C.

This content is only available via PDF.
You do not currently have access to this content.