In this paper we study the dynamics of a weakly nonlinear single-degree-of-freedom system subjected to combined parametric and external excitation. The averaging method is used to establish the existence of invariant tori and analyze their stability. Furthermore, by applying the Melnikov technique to the average system it is shown that there exist transverse homoclinic orbits resulting in chaotic dynamics. Numerical simulation results are also given to demonstrate the theoretical results.

This content is only available via PDF.
You do not currently have access to this content.