The dynamic stress intensity factors of an initially stationary semi-infinite crack in an unbounded linear elastic solid which kinks at some time tf after the arrival of a stress wave is obtained as a function of kinking crack tip velocity v, kinking angle δ, incident stress wave angle α, time t, and the delay time tf. A perturbation method, using the kinking angle δ as the perturbation parameter, is used. The method relies on solving simple problems which can be used with linear superposition to solve the problem of a kinked crack. The solutions can be compared with numerical results and other approximate results for the case of tf = 0 and give excellent agreement for a large range of kinking angles. The elastodynamic stress intensity factors of the kinking crack tip are used to compute the corresponding fluxes of energy into the propagating crack-tip, and these results are discussed in terms of an assumed fracture criterion.

This content is only available via PDF.
You do not currently have access to this content.