Recent theoretical studies indicate that whereas large excitation amplitudes are needed to produce chaotic motions in single-degree-of-freedom systems, extremely small excitation levels can produce chaotic motions in multi-degree-of-freedom systems if they possess autoparametric resonances. To verify these results, we conducted an experimental study of the response of a two-degree-of-freedom structure with quadratic nonlinearities and a two-to-one internal resonance to a primary resonant excitation of the second mode. The responses were analyzed using hardware and software developed for performing time-dependent modal decomposition. We observed periodic, quasi-periodic, and chaotic responses, as predicted by theory. Conditions were found under which extremely small excitation levels produced chaotic motions.

This content is only available via PDF.
You do not currently have access to this content.