In this paper a dynamic model of a flexible robot is built out of a finite element model of each of its links. The number of degrees-of-freedom of these models is strongly reduced by applying the Component Mode Synthesis technique which involves the preliminary calculation of a limited number of mode shapes of the separate links. As can be seen from examples, the type of boundary conditions thereby imposed in the nodes in which one link is connected to the others, strongly determines the accuracy of the calculated resonance frequencies of the robot. The method is applied to an industrial manipulator. The reduced finite element model of the robot is changed in order to match the numerically and experimentally (modal analysis) determined resonance data. Further, the influence of the position of the robot on its resonance frequencies is studied using the optimized numerical model.

This content is only available via PDF.
You do not currently have access to this content.