In Part I, the multiple contact region solutions for an axisymmetric indenter were presented. The solution technique utilized integral transforms and singular integral equations. The emphasis there was the study of the conditions of contact as a function of the physical parameters of the indenter and the layered elastic half space. The method and results were similar to those for the analogous plane-strain problem that was studied in Shield and Bogy (1989). However, several differences in detail were required for the analysis of the axisymmetric geometry. In this Part II, the solution of Part I is used to study some related problems that have been considered previously in the literature for homogeneous half spaces. First we solve the problem of the axisymmetric annular indenter for the layered half space. Multiple contact region solutions are studied and the problem of an axisymmetric punch with internal pressure is solved for the layered half space and also for the special case of a layer with a traction-free lower surface. Finally, the problem of an annular crack in a homogeneous or layered structure is solved.

This content is only available via PDF.
You do not currently have access to this content.