A new boundary equation method is presented for analyzing plates of arbitrary geometry. The plates may have holes and may be subjected to any type of boundary conditions. The boundary value problem for the plate is formulated in terms of two differential and two integral coupled boundary equations which are solved numerically by discretizing the boundary. The differential equations are solved using the finite difference method while the integral equations are solved using the boundary element method. The main advantages of this new method are that the kernels of the boundary integral equations are simple and do not have hyper-singularities. Moreover, the same set of equations is employed for all types of boundary conditions. Furthermore, the use of intrinsic coordinates facilitates the modeling of plates with curvilinear boundaries. The numerical results demonstrate the accuracy and the efficiency of the method.

This content is only available via PDF.
You do not currently have access to this content.