The dynamic response of a two-degree-of-freedom impacting system is considered. The system consists of an inverted pendulum with motion limiting stops attached to a sinusoidally excited mass-spring system. Two types of periodic response for this system are analyzed in detail; existence, stability, and bifurcations of these motions can be explicitly computed using a piecewise linear model. The appearance and loss of stability of very long period subharmonics is shown to coincide with a global bifurcation in which chaotic motions, in the form of Smale horseshoes, arise. Application of this device as an impact damper is also briefly discussed.

This content is only available via PDF.
You do not currently have access to this content.