The dynamic response of a two-degree-of-freedom impacting system is considered. The system consists of an inverted pendulum with motion limiting stops attached to a sinusoidally excited mass-spring system. Two types of periodic response for this system are analyzed in detail; existence, stability, and bifurcations of these motions can be explicitly computed using a piecewise linear model. The appearance and loss of stability of very long period subharmonics is shown to coincide with a global bifurcation in which chaotic motions, in the form of Smale horseshoes, arise. Application of this device as an impact damper is also briefly discussed.
Issue Section:
Research Papers
This content is only available via PDF.
Copyright © 1989
by ASME
You do not currently have access to this content.