Forms of the variable-heat-conductivity coefficient function in the one-dimensional heat equation are determined which yield a standard harmonic eigenvalue sequence as in the case of homogeneity. The continuous case is found to correspond to a four-thirds power law dependence on coordinate. For the stepped case, the condition on the ratio of segmental heat conductivities in terms of the junction location is presented.

This content is only available via PDF.
You do not currently have access to this content.