A new method is presented by which equations of motion of complex dynamical systems are reduced when subjected to some constraints. The method developed is used when the governing equations are derived using Kane’s equations with undetermined multipliers. The solution vectors of the constraint equations are determined utilizing the recursive Householder transformation to obtain a Pseudo-Uptriangular matrix. The most general solution in terms of new independent coordinates is then formulated. Methods previously used for handling such systems are discussed and the new method advantages are illustrated. The procedures developed are suitable for computer automation and especially in developing generic programs to study a large class of systems dynamics such as robotics, biosystems, and complex mechanisms.

This content is only available via PDF.
You do not currently have access to this content.