The effects of Strength Differential (SD) and plastic compressibility for materials obeying the modified von Mises yield criterion were exemplified by solving two boundary-value problems. The assumptions of associated plasticity (leading to maximum plastic volume increase) and nonassociated plasticity (leading to zero plastic volume increase) were used for comparative studies on the effects of plastic compressibility. The solutions for compression processes showed that SD effects increased the pressure at initial yielding and at failure, as well as increased the capacity of the materials to withstand plastic deformations. The opposite was true for tension processes. For associated and nonassociated plasticity, upper and lower bounds for stresses and strains for load and stroke-controlled situations were indicated. The results also showed unrealistic restrictions on the Poisson’s ratio and C/T for nonassociated plasticity under certain conditions. Hence, plastic volume increase, although small, should be incorporated into a more realistic plasticity model.

This content is only available via PDF.
You do not currently have access to this content.