An analysis is presented for the three-dimensional vibration problem of determining the natural frequencies and the mode shapes of a truncated quadrangular pyramid. For this purpose, the body is transformed into a right quadrangular prism with unit edge lengths by a transformation of variables. With the displacements of the transformed prism assumed in the forms of algebraic polynomials, the dynamical energies of the prism are evaluated, and the frequency equation is derived by the Ritz method. This method is applied to quadrangular pyramids in which the base is clamped and the other sides are free, and the natural frequencies (the eigenvalues of vibration) and the mode shapes are calculated numerically, from which the vibration characteristics arising in the pyramids are studied.

This content is only available via PDF.
You do not currently have access to this content.