When long cylindrical flexible membranes are filled with a fluid and used to support external weights, the shape they assume and the relevant geometrical and dynamical quantities are governed by a nonlinear differential equation subject to particular boundary conditions. First, a complete and exact analytical solution is obtained for an unloaded membrane. Very accurate approximate expressions are derived directly from the exact solution for the entire range of applied pressures and fluid densities. Next, the nonlinear differential equation is solved exactly under boundary conditions corresponding to the loading of the membrane. Simple asymptotic expressions are also obtained in the limit of large loads.

This content is only available via PDF.
You do not currently have access to this content.