The excitation of surface waves on a viscous fluid by shear flows is studied. Turbulent and laminar air flows over oil of low and high viscosity are considered. It is found that the dominant wave-generation mechanism depends crucially on the shear-flow profile: for a turbulent flow, long surface waves are generated at low wind speeds due to the work done by the stress components in phase with the surface slope, while Kelvin-Helmholtz instability is responsible for the excitation of short waves at higher wind speeds. On the other hand, for a laminar shear flow, direct resonance between surface waves and Tollmien-Schlichting waves in the shear flow is the dominant wave-generation mechanism.

This content is only available via PDF.
You do not currently have access to this content.