The reflection of an oblique plane shock wave from a boundary in a two-dimensional isotropic hyperelastic material is studied. For plane strain deformations, the strain energy function W is a function of two invariants p and q of the deformation gradient. There are, in general, two reflected waves each of which can be a simple wave or a shock wave. For a special class of materials for which the strain energy function W(p, q) represents a developable surface (of which harmonic materials are particular examples), one of the reflected waves is always a shock wave. It is shown that there are materials other than harmonic materials for which the wave speeds are independent of the direction of propagation. Illustrative examples are presented to show how one can determine the reflected waves from a rigid boundary. It is also shown that for certain incident shock waves, there exists only one reflected wave.

This content is only available via PDF.
You do not currently have access to this content.