The behavior of a curved beam element is studied by comparison to an analytic solution. In the curved beam element, curvature effects are incorporated through a “shallow-shell” type theory. It is shown that when low-order, inplane displacement fields are used for the element, the curvature terms increase the bending stiffness due to contributions from the membrane strains; this is called “membrane locking.” Reduced integration yields a bending stiffness, which is in better agreement with the analytic value, and yet it retains the bending-membrane coupling, which is characteristic of curved elements. The results of the analysis are verified by several numerical examples.

This content is only available via PDF.
You do not currently have access to this content.