One of the experimental findings on short-fiber reinforced composite materials is that the fiber-ends act as a crack initiator. The effect of the fiber-end crack on the overall stiffness and the strength of the composite are investigated here. A particular emphasis is placed upon the weakening longitudinal Young’s modulus by the fiber-end crack which is assumed to be penny-shaped. The energy release rate of the penny-shaped crack at the fiber-end under a uniaxial applied stress is also calculated for a fracture criterion. It is assumed in our theoretical model that short-fibers are all aligned in the loading direction and the penny-shaped crack at the fiber-end extends in the direction perpendicular to the fiber axis. Our analytical technique is a combination of Eshelby’s equivalent inclusion method and Mori-Tanaka’s back stress analysis so that our results are valid even for large volume fraction of fibers.

This content is only available via PDF.
You do not currently have access to this content.