Creep and creep-recovery data of 304 stainless steel are reported for experiments under constant combined tension and torsion at 593°C (1100°F). The data were represented by a viscous-viscoelastic model in which the strain was resolved into five components—elastic, plastic (time-independent), viscoelastic (time-dependent recoverable), and viscous (time-dependent nonrecoverable) which has separate positive and negative components. The data are well represented by a power function of time for each time-dependent strain. By applying superposition to the creep-recovery data, the recoverable creep strain was separated from the nonrecoverable. The form of stress-dependence associated with a third-order multiple integral representation was employed for each strain component. The time-dependent recoverable and nonrecoverable strains had different nonlinear stress dependence; but, the time-independent plastic strain and time-dependent nonrecoverable strain had similar stress-dependence. A limiting stress below which creep was very small or negligible was found for both recoverable and nonrecoverable components as well as a yield limit. The limit for recoverable creep was substantially less than the limits for nonrecoverable creep and yielding. The results showed that the model and equations used in the analysis described quite well the creep and creep-recovery under the stress states tested.

This content is only available via PDF.
You do not currently have access to this content.