The elastic instability of a thin clamped annular plate which has suffered a finite axisymmetric deformation due to simultaneous loading of uniform compression and lateral pressure is studied by examining the asymmetric small free vibration in the neighborhood of the nonlinear axisymmetric equilibrium state. The problem is solved by applying a finite-difference method to the dynamic version of the nonlinear von Karman plate theory. The numerical results indicate that there are the ranges of the magnitude of combined loads under which the axisymmetric deformation of the plate becomes unstable.

This content is only available via PDF.
You do not currently have access to this content.