The development of a three-dimensional boundary layer along a heated cone is analyzed. The surface of the cone is heated under the condition of constant wall heat flux. The perturbation solution is obtained for the flow close to the leading edge where the buoyancy force can be treated as a higher-order effect. A finite-difference solution is obtained for the flow far downstream from the leading edge where buoyancy is one of the cominant forces. The numerical results clearly describe the boundary-layer development along heated cones of different cone angles as well as the heat transfer rate. Boundary-layer stability is briefly discussed in terms of the boundary-layer shape factor.

This content is only available via PDF.
You do not currently have access to this content.