The objective of this work is to provide a mechanical description of steady-state flow of Newtonian fluid in a branching network that consists of rigid vessels of different diameters. Solution of this problem is of importance for better understanding of the mechanics of blood flow within the microcirculation. The developed branching network model predicts a wide distribution of the hydrodynamic pressure and flow in the vessels of the same caliber (flow heterogeneity). The obtained results are compared with predictions of a simple series-parallel network model. It is shown that this model provides an accurate approximation to the values of the mean pressure and flow given by the branching network model.

This content is only available via PDF.
You do not currently have access to this content.