Previously, a set of 9 exact differential equations was derived for the inextensional deformation of a plate bounded by two straight edges and two arbitrary curves. One straight edge is built-in. The other moves rigidly and is subject to a force and couple. The curved edges are stress-free. If the plate twists as it deforms, then, as shown herein, the 9 equations may be replaced by 7. The equations are written in a dimensionless form allowing a ready comparison with Mansfield’s theory that assumes small but finite angles of rotation. If the end load is a couple only, then an independent set of 5 equations emerges. These reduce to 4 for a quadrilateral plate. A numerical example compares the prediction of the exact equations against those of Mansfield. For triangular plates under tip forces only, an alternate, better conditioned, set of 9 differential equations is derived, and the behavior of the solutions near the tip is analyzed.

This content is only available via PDF.
You do not currently have access to this content.