A technique is developed to study random vibration of nonlinear systems. The method is based on the assumption that the joint probability density function of the response variables and input variables is Gaussian. It is shown that this method is more general than the statistical linearization technique in that it can handle non-Gaussian excitations and amplitude-limited responses. As an example a bilinear hysteretic system under white noise excitation is analyzed. The prediction of various response statistics by this technique is in good agreement with other available results.

This content is only available via PDF.
You do not currently have access to this content.