The experimental work of Beavers, et al., established that velocity slip takes place over a permeable boundary. The Reynolds equation governing the flow of lubricant in a finite porous bearing is appropriately modified to include the effect of velocity slip at the permeable boundary. The performance of a bearing with arbitrary wall thickness is then analyzed adopting the narrow bearing approximation. An exact solution is given for the pressure of the lubricant in the bearing material using modified Bessel functions and the modified Reynolds equation for the problem is solved by the Galerkin method. Numerical results obtained with a digital computer indicate that slip flow adversely affects the load capacity and reduces the friction force on the journal; the attitude angle, however, is not significantly affected. Also, the analysis indicates that the effects of velocity slip are prominent when the bearing operates at a higher eccentricity ratio and/or the bearing matrix has a low permeability. The results are presented in graphical and tabular forms and guidelines are outlined to enable designers in assessing bearing performance using the results.

This content is only available via PDF.
You do not currently have access to this content.