The paper presents a technique for solving the plane frictionless contact problems in the presence of gravity and/or uniform clamping pressure. The technique is described by applying it to a simple problem of lifting of an elastic layer lying on a horizontal, rigid, frictionless subspace by means of a concentrated vertical load. First, the problem of continuous contact is considered and the critical value of the load corresponding to the initiation of interface separation is determined. Then the mixed boundary-value problem of discontinuous contact is formulated in terms of a singular integral equation by closely following a technique developed for crack problems. The numerical results include the contact stress distribution and the length of separation region. One of the main conclusions of the study is that neither the separation length nor the contact stresses are dependent on the elastic constants of the layer.

This content is only available via PDF.
You do not currently have access to this content.