The paper considers the elastic layer which is pressed against a half space by loads that are not necessarily symmetric about the center of the loaded region. It is shown that the receding contact between the two bodies can be treated by means of superposition, leading to two homogeneous Fredholm integral equations for auxiliary functions that are directly related to the contact tractions. The determination of the extent of contact and the shift between the load and contact intervals can be viewed as an eigenvalue problem of the homogeneous integral equations. Specific numerical results are given for two types of triangular loads, and a comparison is made with certain symmetric loads.

This content is only available via PDF.
You do not currently have access to this content.