Based on momentum and energy integral equations of the boundary layer an approximate method is developed for computing two-dimensional and axisymmetric steady laminar flows. Simple quadrature formulas have been obtained to determine energy thickness and a shape parameter. Various characteristics of the boundary layer, e.g., different thicknesses, shearing stress at the wall, position of separation, etc., for Howarth and Tani flows, flow past a circular cylinder, a sphere, and a spheroid for various thickness ratios are computed. A comparison with other known solutions indicates that the present quadrature formulas yield closer approximation than do most other approximate methods. A few results for the compressible case (adiabatic wall) have also been presented.

This content is only available via PDF.
You do not currently have access to this content.