The equations from Morley’s one-dimensional theory governing the motion of a curved beam subjected to an arbitrary pulse are solved numerically using the method of characteristics. Propagation of initially longitudinal pulses in beam assemblages with both straight and curved sections is investigated. Simulated isochromatic fringe patterns are constructed by a Calcomp plotter and are compared with actual photoelastic patterns. Remarkably good agreement is found between theory and experiment in all the cases investigated. It is concluded that Morley’s theory can be applied to pulse propagation problems of the type investigated.

This content is only available via PDF.
You do not currently have access to this content.