The variation of shock pressure with the angle between the colliding surfaces in an oblique impact between two plane plates is analyzed theoretically. The analysis is carried out for small impact angles and the plate materials are assumed to behave like fluids (Case 1) and linear elastic media (Case 2). In the latter case the two extreme assumptions concerning the friction at the interface, no friction and no sliding, are treated. The results show that the shock pressure increases quadratically with the impact angle (except for some of the no sliding cases, where decreasing pressure can occur) and that the pressure rise is strongly dependent upon the ratio between the impact velocity and the shock wave velocities for the plate materials.

This content is only available via PDF.
You do not currently have access to this content.