A continuum theory with microstructure for wave propagation in laminated composites, proposed in previous works concerning propagation normal and parallel to the laminates, is extended herein to the general two-dimensional case. Continuum model construction is based upon an asymptotic scheme in which dominant signal wavelengths are assumed large compared to typical composite microdimensions. A hierarchy of models is defined by the order of truncation of the obtained asymptotic sequence. Particular attention is given to the lowest order dispersive theory. The phase velocity spectrum of the general theory is investigated for one-dimensional wave propagation at various propagation angles with respect to the laminates. Retention of all terms in the asymptotic sequence is found to yield the exact elasticity spectrum, while spectral collation of the lowest order dispersive theory with the first three modes of the exact theory gives excellent agreement.

This content is only available via PDF.
You do not currently have access to this content.