The stability of a linear, elastic, circulatory system with two independent loading parameters is studied in general terms. The basic properties of the stability boundary are investigated and several theorems are established. It is shown that for a two-degree-of-freedom system which is capable of flutter instability the stability boundary is always convex toward the region of stability, in direct contrast with systems which cannot exhibit flutter. The practical significance of this result in obtaining lower and upper-bound estimates of the stability boundary is emphasized, and three illustrative examples are presented.

This content is only available via PDF.
You do not currently have access to this content.