A general approach to the numerical solutions for axially symmetric membrane problem is presented. The formulation of the problem leads to a system of first-order nonlinear differential equations. These equations are formulated such that the numerical integration can be carried out for any form of strain-energy function. Solutions to these equations are feasible for various boundary conditions. In this paper, these equations are applied to the problem of a bonded toroid under inflation. A bonded toroid, which is in the shape of a tubeless tire, has its two circular edges rigidly bonded to a rim. The Runge-Kutta method is employed to solve the system of differential equations, in which Mooney’s form of strain-energy function is adopted.
Issue Section:
Research Papers
This content is only available via PDF.
Copyright © 1972
by ASME
You do not currently have access to this content.