This is a mathematical analysis of the two-dimensional interdendritic liquid flow occurring during late stages of solidification, i.e., when the liquidus front reaches the center of the slab. The liquid flow considered is that caused by density change accompanying freezing. The liquid-solid region is considered a porous medium where the liquid permeability is a function of the solid fraction. Analytical solution for the two-dimensional velocity and pressure fields in solidifying Al-4.5 percent Cu alloy is obtained from a mathematical model which includes the concept of conservation of mass and Darcy’s law to correlate the pressure and velocity. Assuming that there is no gas-bubble formation and that the solidified metal in the mushy zone remains rigid, the liquid moving with a creeping velocity in the interdendritic regions is under tension (when no external pressure is applied). The magnitude of this tension increases with increasing depth of the solidifying ingot and is a strong function of the cooling rate. For example, a negative pressure of the order of 100 atm in the interdendritic liquid of solidifying Al-4.5 percent Cu alloy is estimated at ∼90 percent solidification. On the basis of the present analysis, an estimate can be made of pressures required to suppress blow-hole formation during the later stages of freezing arising from the solidification shrinkage.
Skip Nav Destination
Article navigation
March 1972
Research Papers
Two-Dimensional Flow of Liquid During the Late Stage of Solidification of Alloys
R. H. Tien
R. H. Tien
Edgar C. Bain Laboratory, United States Steel Corporation Research Center, Monroeville, Pa.
Search for other works by this author on:
R. H. Tien
Edgar C. Bain Laboratory, United States Steel Corporation Research Center, Monroeville, Pa.
J. Appl. Mech. Mar 1972, 39(1): 65-70 (6 pages)
Published Online: March 1, 1972
Article history
Received:
August 4, 1970
Online:
July 12, 2010
Citation
Tien, R. H. (March 1, 1972). "Two-Dimensional Flow of Liquid During the Late Stage of Solidification of Alloys." ASME. J. Appl. Mech. March 1972; 39(1): 65–70. https://doi.org/10.1115/1.3422670
Download citation file:
Get Email Alerts
Cited By
A Noncontact Method for Estimating Thin Metal Film Adhesion Strength Through Current-Induced Void Growth
J. Appl. Mech (April 2024)
Related Articles
Effect of Density Change on the Solidification of Alloys
J. Heat Transfer (February,1970)
Industrial Direct Chill Slab Caster of Tin Bronze (C903) Using a Porous Filter in the Hot-Top
J. Thermal Sci. Eng. Appl (April,2018)
Freezing Range Effect on Shell Growth Instability During Alloy Solidification
J. Appl. Mech (September,1996)
Related Proceedings Papers
Related Chapters
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Part 2, Section II—Materials and Specifications
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential