The buckling and snap-through behavior of steep arches is studied by treating the arch as a compressible, curved elastica. A technique previously developed for circular arches is here generalized for arches of any shape. As before, the system is described by a two or three-point boundary-value problem containing simultaneous, nonlinear, first-order differential equations. This problem is solved by a shooting method augmented by a Newton-Raphson technique for finding the original curvature at any point along the arch. Selected results for a circular and a parabolic arch under concentrated load are given, including symmetric and unsymmetric modes of buckling.

This content is only available via PDF.
You do not currently have access to this content.