The axisymmetric problem of a line load acting along the axis of a semi-infinite elastic solid is solved using Hankel transforms. In this solution the line load is interpreted as a body force loading and by assuming the line load to be of the form of a Dirac delta function the solution of Mindlin’s problem of a point load within the interior of the half space is obtained. Solutions of this problem presented in the literature have been obtained using semi-inverse techniques whereas the solution given here is obtained in a systematic step-by-step manner.

This content is only available via PDF.
You do not currently have access to this content.