The dynamic compression of a billet by the impact of a falling weight is analyzed with reference to the general plastic properties of pure metals. Theoretical results are compared with the results of published experimental data for pure lead. It is shown that, for lead, the form of the stress-strain curve is little influenced by changes in strain rate during deformation. The strain-hardening coefficient is however found to be strongly influenced by the temperature changes associated with the adiabatic deformation. The position of the maximum in the stress-strain curve is sensitive to the value of the initial strain rate. A method is suggested whereby isothermal stress-strain relationships may be extended to include the effects of adiabatic thermal softening.

This content is only available via PDF.
You do not currently have access to this content.