The problem of a uniformly moving circular surface load of a general orientation on an elastic half space for two types of load distribution, viz., “uniform” and “hemispherical,” is considered. The solutions have been obtained in integral form. The displacements on the surface of the half space, in the case in which the load velocity V is smaller than the transverse wave velocity of the medium CT are expressed in a closed form as a sum of two terms by using properties of Gauss’ hypergeometric functions. One of these terms gives the static part of the solution, whereas the other term represents the velocity effect part. At distances greater than about five radii from the center of the moving circular load, a moving point load is found to be a good approximation.

This content is only available via PDF.
You do not currently have access to this content.