The interaction of a vortex with a stationary surface was studied both theoretically and experimentally. The flow field examined was that produced by radially inward flow through a pair of concentric rotating porous cylinders that were perpendicular to, and in contact with, a stationary flat plane. The complete Navier-Stokes equations were solved over a range of tangential Reynolds numbers from 0–300 and a range of radial Reynolds numbers from 0 to −13, the minus sign indicating radially inward flow. In order to facilitate the solution, the original equations were recast in terms of a dimensionless stream function, vorticity, and third variable related to the tangential velocity. The general validity of the numerical technique was demonstrated by the agreement between the theoretical and experimental results. Examination of the numerical results over a wide range of parameters showed that the entire flow field is very sensitive to the amount of radial flow, especially at the transition from zero radial flow to some finite value.

This content is only available via PDF.
You do not currently have access to this content.