It is clear from a survey of literature on the dynamic deformation of rigid-plastic plates that most work has been focused on plates in which either membrane forces or bending moments alone are considered important, while the combined effect of membrane forces and bending moments on the behavior of plates under static loads and beams under dynamic loads is fairly well established. This paper, therefore, is concerned with the behavior of circular plates loaded dynamically and with deflections in the range where both bending moments and membrane forces are important. A general theoretical procedure is developed from the equations for large deflections of plates and a simplified yield condition due to Hodge. The results obtained when solving the governing equations for the particular case of a simply supported circular plate loaded with a uniform impulsive velocity are found to compare favorably with the corresponding experimental values recorded by Florence.

This content is only available via PDF.
You do not currently have access to this content.