The stability of a long, thin, elastic circular cylindrical shell subjected to axial compression and an axisymmetric load moving with constant velocity along the shell axis is studied. With the aid of the direct method of Liapunov, and employing a nonlinear Donnell-type shell theory, sufficient conditions for local stability of the axisymmetric response are established in a functional space whose metric is defined in an average sense. Numerical results, which are presented for the case of a moving decayed step load, reveal that the sufficient conditions for stability developed here and the sufficient conditions for instability obtained in a previous paper lead to the actual stability transition boundary.

This content is only available via PDF.
You do not currently have access to this content.