A nonlinear spring-mass system with many degrees of freedom, and subjected to periodic exciting forces, is examined. The class of admissible systems and forcing functions is defined, and a geometrical method is described for deducing the steady-state forced vibrations having a period equal to that of the forcing functions. The methods used combine the geometrical methods developed earlier in the problem of normal mode vibrations and Rauscher’s method. The stability of these steady-state forced vibrations is examined by Hsu’s method. The results are applied to an example of a system having two degrees of freedom.

This content is only available via PDF.
You do not currently have access to this content.