Rods impacting a rigid target at velocities sufficient to produce several percent axial strain are found to buckle plastically with a fairly reproducible wavelength. This phenomenon is investigated for materials which exhibit strain-hardening, a property which is crucial to the theory. The buckling motion is treated as a perturbation of the motion associated with the axial compression. It is assumed that the axial strain rate dominates the extensional strain rate due to bending, so that no strain-rate reversal occurs until after the buckling is well developed. Elastic deformations are neglected, and the material is taken to follow a linear strain-hardening law. It is found that the predicted wavelength and buckling time are in reasonable agreement with experimental results.

This content is only available via PDF.
You do not currently have access to this content.